联合学习是一种机器学习方法,其中未在服务器上汇总数据,而是根据安全性和隐私性分配给边缘。 Resnet是一个经典但代表性的神经网络,通过学习将输入和输出加在一起的残留功能,成功地加深了神经网络。在联合学习中,服务器和边缘设备之间执行交流以交换权重参数,但是Resnet具有深层和大量参数,因此通信大小变得很大。在本文中,我们将神经颂歌用作重新设计的轻量级模型,以减少联合学习中的沟通规模。此外,我们使用具有不同数量的迭代的神经ODE模型新引入了灵活的联合学习,这与具有不同深度的重新连接相对应。 CIFAR-10数据集用于评估中,与RESNET相比,神经ODE的使用将通信大小降低了约90%。我们还表明,提出的灵活联合学习可以与不同的迭代计数合并模型。
translated by 谷歌翻译
高性能深神经网络(DNN)的系统在边缘环境中的需求量很高。由于其较高的计算复杂性,在严格限制计算资源的边缘设备上部署DNN是一项挑战。在本文中,我们通过结合最近备份的参数还原技术来得出一个紧凑的DNN模型,称为DSODENET:神经ODE(普通微分方程)和DSC(可分开的卷积)。 Neural Ode利用了Resnet和Ode之间的相似性,并在多层之间共享重量参数的大部分,这大大降低了内存消耗。我们将dsodeNet应用于域适应性,作为与图像分类数据集的实际用例。我们还为dsodeNet提出了一种基于资源的FPGA设计,其中所有参数和特征地图除了预处理和后处理层外,都可以映射到芯片上的记忆中。它是在Xilinx ZCU104板上实施的,并根据域的适应精度,推理速度,FPGA资源利用率和与软件对应物相比进行了评估。结果表明,与我们的基线神经ODE实施相比,DSODENET获得了可比较或稍好的域适应精度,而没有预处理和后处理层的总参数大小降低了54.2%至79.8%。我们的FPGA实施将推理速度加速23.8倍。
translated by 谷歌翻译
A practical issue of edge AI systems is that data distributions of trained dataset and deployed environment may differ due to noise and environmental changes over time. Such a phenomenon is known as a concept drift, and this gap degrades the performance of edge AI systems and may introduce system failures. To address this gap, a retraining of neural network models triggered by concept drift detection is a practical approach. However, since available compute resources are strictly limited in edge devices, in this paper we propose a lightweight concept drift detection method in cooperation with a recently proposed on-device learning technique of neural networks. In this case, both the neural network retraining and the proposed concept drift detection are done by sequential computation only to reduce computation cost and memory utilization. Evaluation results of the proposed approach shows that while the accuracy is decreased by 3.8%-4.3% compared to existing batch-based detection methods, it decreases the memory size by 88.9%-96.4% and the execution time by 1.3%-83.8%. As a result, the combination of the neural network retraining and the proposed concept drift detection method is demonstrated on Raspberry Pi Pico that has 264kB memory.
translated by 谷歌翻译
Target Propagation (TP) is a biologically more plausible algorithm than the error backpropagation (BP) to train deep networks, and improving practicality of TP is an open issue. TP methods require the feedforward and feedback networks to form layer-wise autoencoders for propagating the target values generated at the output layer. However, this causes certain drawbacks; e.g., careful hyperparameter tuning is required to synchronize the feedforward and feedback training, and frequent updates of the feedback path are usually required than that of the feedforward path. Learning of the feedforward and feedback networks is sufficient to make TP methods capable of training, but is having these layer-wise autoencoders a necessary condition for TP to work? We answer this question by presenting Fixed-Weight Difference Target Propagation (FW-DTP) that keeps the feedback weights constant during training. We confirmed that this simple method, which naturally resolves the abovementioned problems of TP, can still deliver informative target values to hidden layers for a given task; indeed, FW-DTP consistently achieves higher test performance than a baseline, the Difference Target Propagation (DTP), on four classification datasets. We also present a novel propagation architecture that explains the exact form of the feedback function of DTP to analyze FW-DTP.
translated by 谷歌翻译
Owing to the widespread adoption of the Internet of Things, a vast amount of sensor information is being acquired in real time. Accordingly, the communication cost of data from edge devices is increasing. Compressed sensing (CS), a data compression method that can be used on edge devices, has been attracting attention as a method to reduce communication costs. In CS, estimating the appropriate compression ratio is important. There is a method to adaptively estimate the compression ratio for the acquired data using reinforcement learning. However, the computational costs associated with existing reinforcement learning methods that can be utilized on edges are expensive. In this study, we developed an efficient reinforcement learning method for edge devices, referred to as the actor--critic online sequential extreme learning machine (AC-OSELM), and a system to compress data by estimating an appropriate compression ratio on the edge using AC-OSELM. The performance of the proposed method in estimating the compression ratio is evaluated by comparing it with other reinforcement learning methods for edge devices. The experimental results show that AC-OSELM achieved the same or better compression performance and faster compression ratio estimation than the existing methods.
translated by 谷歌翻译
IR models using a pretrained language model significantly outperform lexical approaches like BM25. In particular, SPLADE, which encodes texts to sparse vectors, is an effective model for practical use because it shows robustness to out-of-domain datasets. However, SPLADE still struggles with exact matching of low-frequency words in training data. In addition, domain shifts in vocabulary and word frequencies deteriorate the IR performance of SPLADE. Because supervision data are scarce in the target domain, addressing the domain shifts without supervision data is necessary. This paper proposes an unsupervised domain adaptation method by filling vocabulary and word-frequency gaps. First, we expand a vocabulary and execute continual pretraining with a masked language model on a corpus of the target domain. Then, we multiply SPLADE-encoded sparse vectors by inverse document frequency weights to consider the importance of documents with lowfrequency words. We conducted experiments using our method on datasets with a large vocabulary gap from a source domain. We show that our method outperforms the present stateof-the-art domain adaptation method. In addition, our method achieves state-of-the-art results, combined with BM25.
translated by 谷歌翻译
To ensure the safety of railroad operations, it is important to monitor and forecast track geometry irregularities. A higher safety requires forecasting with a higher spatiotemporal frequency. For forecasting with a high spatiotemporal frequency, it is necessary to capture spatial correlations. Additionally, track geometry irregularities are influenced by multiple exogenous factors. In this study, we propose a method to forecast one type of track geometry irregularity, vertical alignment, by incorporating spatial and exogenous factor calculations. The proposed method embeds exogenous factors and captures spatiotemporal correlations using a convolutional long short-term memory (ConvLSTM). In the experiment, we compared the proposed method with other methods in terms of the forecasting performance. Additionally, we conducted an ablation study on exogenous factors to examine their contribution to the forecasting performance. The results reveal that spatial calculations and maintenance record data improve the forecasting of the vertical alignment.
translated by 谷歌翻译
Embodied Instruction Following (EIF) studies how mobile manipulator robots should be controlled to accomplish long-horizon tasks specified by natural language instructions. While most research on EIF are conducted in simulators, the ultimate goal of the field is to deploy the agents in real life. As such, it is important to minimize the data cost required for training an agent, to help the transition from sim to real. However, many studies only focus on the performance and overlook the data cost -- modules that require separate training on extra data are often introduced without a consideration on deployability. In this work, we propose FILM++ which extends the existing work FILM with modifications that do not require extra data. While all data-driven modules are kept constant, FILM++ more than doubles FILM's performance. Furthermore, we propose Prompter, which replaces FILM++'s semantic search module with language model prompting. Unlike FILM++'s implementation that requires training on extra sets of data, no training is needed for our prompting based implementation while achieving better or at least comparable performance. Prompter achieves 42.64% and 45.72% on the ALFRED benchmark with high-level instructions only and with step-by-step instructions, respectively, outperforming the previous state of the art by 6.57% and 10.31%.
translated by 谷歌翻译
长尾数据集(Head Class)组成的培训样本比尾巴类别多得多,这会导致识别模型对头等舱有偏见。加权损失是缓解此问题的最受欢迎的方法之一,最近的一项工作表明,班级难度可能比常规使用的类频率更好地决定了权重的分布。在先前的工作中使用了一种启发式公式来量化难度,但是我们从经验上发现,最佳公式取决于数据集的特征。因此,我们提出了困难网络,该难题学习在元学习框架中使用模型的性能来预测类的难度。为了使其在其他班级的背景下学习班级的合理难度,我们新介绍了两个关键概念,即相对难度和驾驶员损失。前者有助于困难网络在计算班级难度时考虑其他课程,而后者对于将学习指向有意义的方向是必不可少的。对流行的长尾数据集进行了广泛的实验证明了该方法的有效性,并且在多个长尾数据集上实现了最先进的性能。
translated by 谷歌翻译
本文介绍了素描的现实,这种方法结合了AR素描和驱动的有形用户界面(TUI),用于双向素描交互。双向草图使虚拟草图和物理对象通过物理驱动和数字计算相互影响。在现有的AR素描中,虚拟世界和物理世界之间的关系只是一个方向 - 虽然物理互动会影响虚拟草图,但虚拟草图对物理对象或环境没有返回效果。相反,双向素描相互作用允许草图和驱动的tuis之间的无缝耦合。在本文中,我们采用桌面大小的小型机器人(Sony Toio)和基于iPad的AR素描工具来演示该概念。在我们的系统中,在iPad上绘制和模拟的虚拟草图(例如,线,墙壁,摆和弹簧)可以移动,动画,碰撞和约束物理Toio机器人,就像虚拟草图和物理对象存在于同一空间中一样通过AR和机器人运动之间的无缝耦合。本文贡献了一组新型的互动和双向AR素描的设计空间。我们展示了一系列潜在的应用,例如有形的物理教育,可探索的机制,儿童有形游戏以及通过素描的原位机器人编程。
translated by 谷歌翻译